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What is a superalgebra?

Let A and B be vector subspaces of some algebra X, we say they form a
superalgebra over X if:

e A B=X.
e AACA,BBC AJAB C B,BA C B.

e A is the ‘even’ component, B is the ‘odd’ component.
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What is a superalgebra?

Let A and B be vector subspaces of some algebra X, we say they form a
superalgebra over X if:

e ApB=2X.
e AACA,BBC AJAB C B,BA C B.
e A is the ‘even’ component, B is the ‘odd’ component.

Superalgebras arise naturally in mathematics, in particular appearing in

representation theory, and also in physics when studying the theory of
supersymmetry.
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What is a superalgebra?

Let A and B be vector subspaces of some algebra X, we say they form a
superalgebra over X if:

e ApB=2X.

e AACA,BBC AJAB C B,BA C B.

e A is the ‘even’ component, B is the ‘odd’ component.
Superalgebras arise naturally in mathematics, in particular appearing in
representation theory, and also in physics when studying the theory of
supersymmetry.

Our goal for the next few slides is to give a concrete example of a superalgebra
over M, (K), for K a field with char(K) = 0, first constructed by Hill, Lettington
& Schmidt in 2017.
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Defining .S,

Let a matrix M be in S,, C M, (K) if

ZMijzzMji:UJfOI’a” 1<j<n.

i=1 i=1
1
Equivalently, taking 1,, = (

) € Z", we can write this as
1

15M = w1l M1, = wl,.
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Defining .S,

Let a matrix M be in S,, C M, (K) if

n n

ZMijzzMji:UJfOI’a” 1<j<n.

=1 1=1
1

: ) € Z™, we can write this as

Equivalently, taking 1,, = (
1

15M = w1l M1, = wl,.

Now, taking (-,-) to be the standard bilinear form (a,b) = a®'b for a,b € K", we
also have that:

MeS, < (u,M1,)=0, (1,,Mu) =0V u e {1,}*.
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Properties of .S,

Sp={M € M,(K) : (u,M1,) =0, (1,,, Mu) =0V ue {1,}*}.

Jenny Roberts (University of Bristol) Matrix superalgebras 19 April 2023 4/18



Properties of .S,

Sp={M € M,(K): {(u,M1,) =0, (1,, Mu) =0V u € {1,}+}.

@ Define the weight of a matrix M to be

J— 1
wt(M) = — > M, = ﬁlfMln.
i,j=1
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Properties of .S,

Sp={M € M,(K): {(u,M1,) =0, (1,, Mu) =0V u € {1,}+}.

@ Define the weight of a matrix M to be

J— 1
wt(M) = — > M, = ﬁlfMln.
i,j=1

@ Then M € S, if and only if we can write:
M = My + Wt(M)En

where M is such that wt(My) = 0 and ¢, is the n X n all 1s matrix
(en = 1,11,
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Properties of .S,

Sp={M € M,(K): {(u,M1,) =0, (1,, Mu) =0V u € {1,}+}.

@ Define the weight of a matrix M to be

1 < 1,
wt(M) = — Z Mij = —17 M1,
3,7=1
@ Then M € S, if and only if we can write:
M = My + Wt(M)En

where M is such that wt(My) = 0 and ¢, is the n X n all 1s matrix
(en = 1,11,

e dim(S,) =n?—-2(n—1)=n?—2n+2.
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Sy example

——=

Consider Sy C My(K), then Sy =span ((59), (1 1)).
1
2

Then, wt ({ §) = 5 and we can write:

10711—1+111
0 1) 2\-1 1 2\1 1
N —— N ——

Mo wt(M)e,,
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Defining V,,

Let a matrix M be in V,, ¢ M,,(K) if

Mij—FMkl ZMil—FMkj, i,5,k, 1l € {1,-~- ,n} and Z Mij =0

ij=1
% * k * * * * *
b3 * k *k * k k b3
k3 * k *k * ES * *
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Defining V,,

Let a matrix M be in V,, ¢ M,,(K) if

Mij + My = My —|—Mkj, i,5,k, 1l € {1,-~- ,n} and Z Mij =0
ij=1

Using the bilinear form (-, -), we have:

M eV, < (u,Mv)=0VYu,ve{l,}*, (1,,M1,) =0.
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Vi, ={M € M,(K) : (u,Mv) =0V u,v € {1,}*+, (1,,, M1,)) = 0}.

«O> < Fr «=>r «=)» DA



Properties of V,

Vo ={M € M,(K) : (u, Mv) =0V u,v € {1,,}*, (1,,, M1,) = 0}.
e M €V, if and only if we can write:

M = all 41,07 for some a,b € {1,}*
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Properties of V,

Vo ={M € M,(K) : (u, Mv) =0V u,v € {1,,}*, (1,,, M1,) = 0}.
e M €V, if and only if we can write:

M = all 41,07 for some a,b € {1,}*

e dim(V,,) =2n — 2.
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V5 example

Consider Vo C Ms(K), then Vo =span ((§ °,), (% §)). Then,

(6 &)=3(L)a vez(i)a -

T
all
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Sn

uT'M1, =1"Mu=0 Vue{l,}*

My + wt(M)e,

Vn
dim(S,) =n? — 2n +2

ul Mv=1"M1, =0 VY u,v e {1,}+

all 41,07 for some a,b € {1, }+

dim(V,,) =2n — 2

«O>» «F>r «=r «=>» E A



Sn

uf' M1, =1TMu=0 Vue{l,}*

Vn
;‘T\[“ + Wt(i\[)g,,,

€1
u'Mv=1IM1,, =0 Vu,v € {1,}
dim(S,) =n? —2n + 2

‘ 1
all +1,bT for some a,b € {1,,}

dim(V,,) =2n — 2

«O> < Fr «=>r «=)» DA



Recap

Sn Vi

uI'M1, =1TMu=0 Vuec{l,}* «"Mv=1"M1, =0 Vu,ve{l,}+

1

Moy + wt(M)e, all +1,bT for some a,b € {1,}+
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Recap

Sn Vi

uI'M1, =1TMu=0 Vuec{l,}* «"Mv=1"M1, =0 Vu,ve{l,}+

Moy + wt(M)e, all +1,bT for some a,b € {1,}+

dim(S,) =n? — 2n + 2 dim(V,,) =2n — 2
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Recap

Sn Vi

uI'M1, =1TMu=0 Vuec{l,}* «"Mv=1"M1, =0 Vu,ve{l,}+
Moy + wt(M)e, all 41,b7 for some a,b € {1, }+
dim(S,) =n? — 2n + 2 dim(V;,) =2n — 2

Can we show that M, (K) =S, ®V,,?
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Recap

dim(S,,) =n? — 2n +2

Can we show that M, (K) =S, ®V,,?
e dim(S,,) +dim(V,,) = n? = dim(M,,(K))
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Recap

Sn Vi

uI'M1, =1TMu=0 Vuec{l,}* «"Mv=1"M1, =0 Vu,ve{l,}+

Moy + wt(M)e, all 41,b7 for some a,b € {1, }+
dim(S,) =n? — 2n + 2 dim(V;,) =2n — 2

Can we show that M, (K) =S, ®V,,?
e dim(S,,) +dim(V,,) = n? = dim(M,,(K))
@ Need to show: S, NV, =0,
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Sp,NV,=0,

Assume M € S, NV, then, for all u,v € {1,,}*, M satisfies:
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Sp,NV,=0,

Assume M € S, NV, then, for all u,v € {1,,}*, M satisfies:

Q (1,,,Mu)=0

Equation (2) = Mu is orthogonal to 1,,.
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Sp,NV,=0,

Assume M € S, NV, then, for all u,v € {1,,}*, M satisfies:

Q@ (v,Mu)=0

Equation (2) = Mu is orthogonal to 1,,.

Equation (3) = Mu is orthogonal to {1,,}.
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Sp,NV,=0,

Assume M € S, NV, then, for all u,v € {1,,}*, M satisfies:

Q@ (u,M1,)=0
Q (1,,,Mu)=0
Q@ (v,Mu)=0

e <1na M1n> =0
Equation (2) = Mu is orthogonal to 1,,.
Equation (3) = Mu is orthogonal to {1,,}+.

So, for all u € {1,}*, Mu must be orthogonal to all of K™, hence Mu = 0.
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Sp,NV,=0,

Assume M € S, NV, then, for all u,v € {1,,}*, M satisfies:
Q (u,M1,)=0

Q (1,,M1,)=0
Equation (2) = Mu is orthogonal to 1,,.

Equation (3) = Mu is orthogonal to {1,,}.
So, for all u € {1,}*, Mu must be orthogonal to all of K™, hence Mu = 0.

Using a similar argument with equations (1) and (4), we have that M1,, = 0.
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Sp,NV,=0,

Assume M € S, NV, then, for all u,v € {1,,}*, M satisfies:

Q@ (u,M1,)=0
Q (1,,,Mu)=0
Q@ (v,Mu)=0

Q (1,,M1,)=0
Equation (2) = Mu is orthogonal to 1,,.
Equation (3) = Mu is orthogonal to {1,,}+.
So, for all u € {1,,}*, Mu must be orthogonal to all of K™, hence Mu = 0.
Using a similar argument with equations (1) and (4), we have that M1,, = 0.
Since span(1,, {1,}*) = K™, we know Ma = 0 for all a € K", hence M = 0,,.
Hence, S, ® V,, = M, (K).
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Superalgebra property

To check we have a superalgebra, we need:

SnSn - Sn; ViV C Sn> SnVn - Vna Vnsn C Va.
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Superalgebra property

To check we have a superalgebra, we need:
STLSTL C S’ﬂ) VVIVH C S’I’L? SnVn C VTL? Vnsn C Vtrr

Let 51,55 € S, then
<1n, S152U> = 1?5152’& = w11TSQU =0.
v n
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Superalgebra property

To check we have a superalgebra, we need:
STLSTL C S’ﬂ) VVIVH C S’I’L? SnVn C VTL? Vnsn C Vtrr

Let 51,55 € S, then
(1,51 S2u) = 1181 Sou = w117 Sou = 0.
(u, S1921,) = uTS1 851, = woul S 1, = 0.
= 5155 € S,.
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Superalgebra property

To check we have a superalgebra, we need:
STLSTL C S’ﬂ) thvvn C S’I’L? SnVn C VTL? Vnsn C Vtrr

Let 51,55 € S, then
(1,51 S2u) = 1181 Sou = w117 Sou = 0.
(u, S1921,) = uTS1 851, = woul S 1, = 0.
= 5155 € S,,. Others follow similarly, so S,, and V,, form a superalgebra.
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Superalgebra property

To check we have a superalgebra, we need:
STLSTL C S’ﬂ) VVIVH C S’I’L? SnVn C VTL? Vnsn C Vtrr

Let 51,55 € S, then
(1,51 S2u) = 1181 Sou = w117 Sou = 0.
(u, S1921,) = uTS1 851, = woul S 1, = 0.
= 5155 € S,,. Others follow similarly, so S,, and V,, form a superalgebra.

For any matrix M € M, (K), we can decompose M as M = S + V for some
SeS,and V eV,. In particular,

M = My +wt(M)e, + a1’ + 1,07
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Lattice isometry problem

o Take two rank n Z-lattices Ay and Ap with associated Gram matrices
M,B e GL,(Z).

@ If Ay; and Ap are isometric, then we can write M = NTBN for some
N € GL,(Z).

@ We want to use the superalgebra structure on the above equation to try to
determine if its possible for the lattices to be isometric. In the case B = I,,,
Higham, Lettington & Schmidt (2021) studied this problem to see when
M =NTN.
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Lattice isometry problem

o Take two rank n Z-lattices Ay and Ap with associated Gram matrices
M,B e GL,(Z).

@ If Ay; and Ap are isometric, then we can write M = NTBN for some
N € GL,(Z).

@ We want to use the superalgebra structure on the above equation to try to
determine if its possible for the lattices to be isometric. In the case B = I,,,
Higham, Lettington & Schmidt (2021) studied this problem to see when
M =NTN.

Idea: Decompose M into S, and V,, parts and compare with the S,, and V,,
parts of NTBN.

To do this, we need to take K = Q and generalise the ideas of S,, and V,,.
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The new superalgebra

Take B to be a symmetric, positive definite matrix in GL,,(Z). Define (-,-)p to
be the vector inner product (a,b)p = a” Bb. Then

Spp={M e M,(Q): (u, M1,)p =0, (1,, Mu)g =0V uc {1,}5}.
Vg ={M € M,(Q): (1,,, M1,)p =0, (u, Mv)g =0V u,v € {1,}5}.

where u € {1,}5 < (u,1,)p =u’B1, =0.
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The new superalgebra

Take B to be a symmetric, positive definite matrix in GL,,(Z). Define (-,-)p to
be the vector inner product (a,b)p = a” Bb. Then

Spp = {M € My(Q) : (u,M1,)p =0, (1,, Mu)p =0V u € {1,}5}.
Vo ={M € M,(Q): (1,, M1,)5 =0, (u, Mv)g =0V u,v € {1,}5}.
where u € {1,}5 < (u,1,)p =u’B1, =0.

Define weight w.r.t. B as

1TBM1 1"BM1
t M —_n n —_n n
wt(M)z 17'B1, n2wt(B)
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The new superalgebra

Then

Wt(]\/f)B
MeS,p < M=DMy+ ———+
W 0t n2wt(B)

MeV,p <= M=alB+1,b"B for some a,b € {1,}3.

enB, for some My s.t. wt(Mp)p = 0.

It turns out S, g & V,, g = M, (Q) is also a superalgebra. So for any
M € M, (Q), we can write:

wt(M)p e e
M = My + 2(7)5,13 +allB+1,0"B.
n2wt(B)
Jenny Roberts (University of Bristol) Matrix superalgebras
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Application to lattice isometry

Let's assume that M and B are the gram matrices of two isometric lattices. Then
we can write M = NTBN. Taking the weight of M (multiplied by n?):

n*wt(M)
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Application to lattice isometry

Let's assume that M and B are the gram matrices of two isometric lattices. Then
we can write M = NTBN. Taking the weight of M (multiplied by n?):

n*wt(M) =1L M1, =1 NTBN1,
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Application to lattice isometry

Let's assume that M and B are the gram matrices of two isometric lattices. Then
we can write M = NTBN. Taking the weight of M (multiplied by n?):

n*wt(M) =1L M1, =1 NTBN1,
= 1INTB(Ny + wyenB + all B + 1,0" B)1,
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Application to lattice isometry

Let's assume that M and B are the gram matrices of two isometric lattices. Then
we can write M = NTBN. Taking the weight of M (multiplied by n?):

n*wt(M) =1L M1, =1 NTBN1,
= 1INTB(Ny + wyenB + all B + 1,0" B)1,
= lzNTB(sznB + alZB)ln
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Application to lattice isometry

Let's assume that M and B are the gram matrices of two isometric lattices. Then
we can write M = NTBN. Taking the weight of M (multiplied by n?):
n*wt(M) =11 M1, = 1INTBN1,

=1"NTB(Ny + wne, B +all B + 1,07 B)1,,

=1 N"B(wyenB + all B)1,

=wy1INTB1,1B1, + 1" N Ba1l B1,,
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Application to lattice isometry

Let's assume that M and B are the gram matrices of two isometric lattices. Then
we can write M = NTBN. Taking the weight of M (multiplied by n?):
n*wt(M) =12 M1, =1'NTBN1,,
=1"NTB(Ny + wyen B +all B+ 1,07 B)1,,
=1"NTB(wyen B + all B)1,
=wn1INTB1,17B1,, +1'NTBa 17 B1,,
——— —— ——

n2wt(B) n2wt(B)
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Application to lattice isometry

Let's assume that M and B are the gram matrices of two isometric lattices. Then
we can write M = NTBN. Taking the weight of M (multiplied by n?):
n*wt(M) =1"M1, =1T'NTBN1,,
=1I'NTB(Ny + wyen B+ all B +1,0"B)1,,
=1"N"B(wye, B +all B)1,,
=wny1INTB1,1IB1, +1'NTBa 1! B1,,
—_——— —— ——
n2wt(B) n2wt(B)
~ wt(N)p 1"BN1,,
- n2wt(B)  ntwt(B)?2

= 1'N"B1,, =11 BN1,, = n*wt(B)*wy
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Application to lattice isometry

Let's assume that M and B are the gram matrices of two isometric lattices. Then
we can write M = NTBN. Taking the weight of M (multiplied by n?):
n*wt(M) =17 M1, =17 NTBN1,,
=1"NTB(Ny + wyen B +all B+ 1,07 B)1,,
=1"NTB(wyen B + all B)1,
=wn1INTB1,17B1,, +1'NTBa 17 B1,,
———— —— ——
ntwt(B)2wn n2wt(B) n2wt(B)

= nSwt(B)3w?% + n’wt(B)1L(N{ + wnBe, + B1Ya + Bb1Y)Ba
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Application to lattice isometry

Let's assume that M and B are the gram matrices of two isometric lattices. Then
we can write M = NTBN. Taking the weight of M (multiplied by n?):
n*wt(M) =12 M1, =1'NTBN1,,
=1"NTB(Ny + wyen B +all B+ 1,07 B)1,,
=1"NTB(wyen B + all B)1,
=wn1INTB1,17B1,, +1'NTBa 17 B1,,
———— —— ——
ntwt(B)2wn n2wt(B) n2wt(B)
= nSwt(B)3w?% + n’wt(B)1L(N{ + wnBe, + B1Ya + Bb1Y)Ba
= n®wt(B)3w? + n'wt(B)?a” Ba
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Application to lattice isometry

So we have
n?wt(M) = nSwt(B)3w3 + n'wt(B)%a’ Ba.
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Application to lattice isometry

So we have
n?wt(M) = nSwt(B)3w3 + n'wt(B)%a’ Ba.

If we scale up by nwt(B)?, we obtain a positive definite, integral quadratic form
in n + 1 variables:

nSwt(B)?wt(M) = n*wt(B)&? + a’ Ba

where © = n?wt(B)wy € Z, @ = n’wt(B)a € Z".
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Application to lattice isometry

So we have
n?wt(M) = nSwt(B)3w3 + n'wt(B)%a’ Ba.

If we scale up by nwt(B)?, we obtain a positive definite, integral quadratic form
in n + 1 variables:

nSwt(B)?wt(M) = n*wt(B)&? + a’ Ba
where © = n?wt(B)wy € Z, @ = n’wt(B)a € Z".

So, if Ay and Ap are rank n, isometric lattices, we must have an integer solution
to the above quadratic form.
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Rank 2 example
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Rank 2 example

Take B=(}2)and M = (33).
n’*wt(B) = 6,wt(M) = £ and a” Ba = a? + 5a3.

Using the condition that 17 Ba = a; + 5as = 0, we have a; = —5as. Taking
w = 36wy € Z,a = 3bas € 7Z, we have

42 = &% + 5a2.
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Rank 2 example

Take B=(}2)and M = (33).
n’*wt(B) = 6,wt(M) = £ and a” Ba = a? + 5a3.

Using the condition that 17 Ba = a; + 5as = 0, we have a; = —5as. Taking
w = 36wy € Z,a = 3bas € 7Z, we have

42 = &% + 5a2.

So |a| < 2, and after trying all options, it is clear there are no integer solutions,
so B and M cannot be isometric!
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Thank you!
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