Matrix superalgebras and lattice isometry

Jenny Roberts
(joint work with Dan Fretwell)

University of Bristol

19 April 2023

What is a superalgebra?

Let A and B be vector subspaces of some algebra X, we say they form a superalgebra over X if:

- $A \oplus B=X$.
- $A A \subset A, B B \subset A, A B \subset B, B A \subset B$.
- A is the 'even' component, B is the 'odd' component.

What is a superalgebra?

Let A and B be vector subspaces of some algebra X, we say they form a superalgebra over X if:

- $A \oplus B=X$.
- $A A \subset A, B B \subset A, A B \subset B, B A \subset B$.
- A is the 'even' component, B is the 'odd' component.

Superalgebras arise naturally in mathematics, in particular appearing in representation theory, and also in physics when studying the theory of supersymmetry.

What is a superalgebra?

Let A and B be vector subspaces of some algebra X, we say they form a superalgebra over X if:

- $A \oplus B=X$.
- $A A \subset A, B B \subset A, A B \subset B, B A \subset B$.
- A is the 'even' component, B is the 'odd' component.

Superalgebras arise naturally in mathematics, in particular appearing in representation theory, and also in physics when studying the theory of supersymmetry.
Our goal for the next few slides is to give a concrete example of a superalgebra over $M_{n}(K)$, for K a field with $\operatorname{char}(K)=0$, first constructed by Hill, Lettington \& Schmidt in 2017.

Defining S_{n}

Let a matrix M be in $S_{n} \subset M_{n}(K)$ if

$$
\sum_{i=1}^{n} M_{i j}=\sum_{i=1}^{n} M_{j i}=w \text { for all } 1 \leq j \leq n
$$

Equivalently, taking $1_{n}=\left(\begin{array}{c}1 \\ \vdots \\ 1\end{array}\right) \in \mathbb{Z}^{n}$, we can write this as

$$
1_{n}^{T} M=w 1_{n}^{T}, M 1_{n}=w 1_{n}
$$

Defining S_{n}

Let a matrix M be in $S_{n} \subset M_{n}(K)$ if

$$
\sum_{i=1}^{n} M_{i j}=\sum_{i=1}^{n} M_{j i}=w \text { for all } 1 \leq j \leq n
$$

Equivalently, taking $1_{n}=\left(\begin{array}{c}1 \\ \vdots \\ 1\end{array}\right) \in \mathbb{Z}^{n}$, we can write this as

$$
1_{n}^{T} M=w 1_{n}^{T}, M 1_{n}=w 1_{n}
$$

Now, taking $\langle\cdot, \cdot\rangle$ to be the standard bilinear form $\langle a, b\rangle=a^{T} b$ for $a, b \in K^{n}$, we also have that:

$$
M \in S_{n} \Longleftrightarrow\left\langle u, M 1_{n}\right\rangle=0,\left\langle 1_{n}, M u\right\rangle=0 \forall u \in\left\{1_{n}\right\}^{\perp} .
$$

Properties of S_{n}

$$
S_{n}=\left\{M \in M_{n}(K):\left\langle u, M 1_{n}\right\rangle=0,\left\langle 1_{n}, M u\right\rangle=0 \forall u \in\left\{1_{n}\right\}^{\perp}\right\} .
$$

Properties of S_{n}

$$
S_{n}=\left\{M \in M_{n}(K):\left\langle u, M 1_{n}\right\rangle=0,\left\langle 1_{n}, M u\right\rangle=0 \forall u \in\left\{1_{n}\right\}^{\perp}\right\}
$$

- Define the weight of a matrix M to be

$$
\mathrm{wt}(M)=\frac{1}{n^{2}} \sum_{i, j=1}^{n} M_{i j}=\frac{1}{n^{2}} 1_{n}^{T} M 1_{n} .
$$

Properties of S_{n}

$$
S_{n}=\left\{M \in M_{n}(K):\left\langle u, M 1_{n}\right\rangle=0,\left\langle 1_{n}, M u\right\rangle=0 \forall u \in\left\{1_{n}\right\}^{\perp}\right\} .
$$

- Define the weight of a matrix M to be

$$
\mathrm{wt}(M)=\frac{1}{n^{2}} \sum_{i, j=1}^{n} M_{i j}=\frac{1}{n^{2}} 1_{n}^{T} M 1_{n} .
$$

- Then $M \in S_{n}$ if and only if we can write:

$$
M=M_{0}+\mathrm{wt}(M) \varepsilon_{n}
$$

where M_{0} is such that $\operatorname{wt}\left(M_{0}\right)=0$ and ε_{n} is the $n \times n$ all 1 s matrix $\left(\varepsilon_{n}=1_{n} 1_{n}^{T}\right)$.

Properties of S_{n}

$$
S_{n}=\left\{M \in M_{n}(K):\left\langle u, M 1_{n}\right\rangle=0,\left\langle 1_{n}, M u\right\rangle=0 \forall u \in\left\{1_{n}\right\}^{\perp}\right\} .
$$

- Define the weight of a matrix M to be

$$
\mathrm{wt}(M)=\frac{1}{n^{2}} \sum_{i, j=1}^{n} M_{i j}=\frac{1}{n^{2}} 1_{n}^{T} M 1_{n} .
$$

- Then $M \in S_{n}$ if and only if we can write:

$$
M=M_{0}+\mathrm{wt}(M) \varepsilon_{n}
$$

where M_{0} is such that $\operatorname{wt}\left(M_{0}\right)=0$ and ε_{n} is the $n \times n$ all 1 s matrix $\left(\varepsilon_{n}=1_{n} 1_{n}^{T}\right)$.

- $\operatorname{dim}\left(S_{n}\right)=n^{2}-2(n-1)=n^{2}-2 n+2$.

S_{2} example

Consider $S_{2} \subset M_{2}(K)$, then $S_{2}=\operatorname{span}\left(\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)\right)$. Then, wt $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=\frac{1}{2}$ and we can write:

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\underbrace{\frac{1}{2}\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)}_{M_{0}}+\underbrace{\frac{1}{2}\left(\begin{array}{cc}
1 & 1 \\
1 & 1
\end{array}\right)}_{\mathrm{wt}(M) \varepsilon_{n}}
$$

Defining V_{n}

Let a matrix M be in $V_{n} \subset M_{n}(K)$ if

$$
\begin{aligned}
M_{i j}+M_{k l}= & M_{i l}+M_{k j}, i, j, k, l \in\{1, \cdots, n\} \text { and } \sum_{i, j=1}^{n} M_{i j}=0 \\
& \left(\begin{array}{ccc}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right)\left(\begin{array}{ccc}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right)\left(\begin{array}{ccc}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right)
\end{aligned}
$$

Defining V_{n}

Let a matrix M be in $V_{n} \subset M_{n}(K)$ if

$$
\begin{aligned}
M_{i j}+M_{k l}= & M_{i l}+M_{k j}, i, j, k, l \in\{1, \cdots, n\} \text { and } \sum_{i, j=1}^{n} M_{i j}=0 \\
& \left(\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right)\left(\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right)\left(\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right)
\end{aligned}
$$

Using the bilinear form $\langle\cdot, \cdot\rangle$, we have:

$$
M \in V_{n} \Longleftrightarrow\langle u, M v\rangle=0 \forall u, v \in\left\{1_{n}\right\}^{\perp},\left\langle 1_{n}, M 1_{n}\right\rangle=0
$$

Properties of V_{n}

$$
V_{n}=\left\{M \in M_{n}(K):\langle u, M v\rangle=0 \forall u, v \in\left\{1_{n}\right\}^{\perp},\left\langle 1_{n}, M 1_{n}\right\rangle=0\right\} .
$$

Properties of V_{n}

$$
V_{n}=\left\{M \in M_{n}(K):\langle u, M v\rangle=0 \forall u, v \in\left\{1_{n}\right\}^{\perp},\left\langle 1_{n}, M 1_{n}\right\rangle=0\right\} .
$$

- $M \in V_{n}$ if and only if we can write:

$$
M=a 1_{n}^{T}+1_{n} b^{T} \text { for some } a, b \in\left\{1_{n}\right\}^{\perp}
$$

Properties of V_{n}

$$
V_{n}=\left\{M \in M_{n}(K):\langle u, M v\rangle=0 \forall u, v \in\left\{1_{n}\right\}^{\perp},\left\langle 1_{n}, M 1_{n}\right\rangle=0\right\} .
$$

- $M \in V_{n}$ if and only if we can write:

$$
M=a 1_{n}^{T}+1_{n} b^{T} \text { for some } a, b \in\left\{1_{n}\right\}^{\perp}
$$

- $\operatorname{dim}\left(V_{n}\right)=2 n-2$.

V_{2} example

Consider $V_{2} \subset M_{2}(K)$, then $V_{2}=\operatorname{span}\left(\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right),\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)\right)$. Then,

$$
\begin{aligned}
& \left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=\underbrace{\frac{1}{2}\binom{1}{-1}\left(\begin{array}{ll}
1 & 1
\end{array}\right)}_{a 1_{n}^{T}}+\underbrace{\frac{1}{2}\binom{1}{1}\left(\begin{array}{ll}
1 & -1
\end{array}\right)}_{1_{n} b^{T}} \\
& \left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=\frac{1}{2}\binom{1}{-1}\left(\begin{array}{ll}
1 & 1
\end{array}\right)+\frac{1}{2}\binom{1}{1}\left(\begin{array}{ll}
-1 & 1
\end{array}\right)
\end{aligned}
$$

Recap

$$
\begin{array}{cc}
S_{n} & V_{n} \\
u^{T} M 1_{n}=1_{n}^{T} M u=0 \quad \forall u \in\left\{1_{n}\right\}^{\perp} \quad u^{T} M v=1_{n}^{T} M_{n}=0 \quad \forall u, v \in\left\{1_{n}\right\}^{\perp} \\
M_{0}+w t(M) \varepsilon_{n} \\
\operatorname{dim}\left(S_{n}\right)=n^{2}-2 n+2 & \operatorname{a1} 1_{n}^{T}+1_{n} b^{T} \text { for some } a, b \in\left\{1_{n}\right\}^{\perp} \\
\operatorname{dim}\left(V_{n}\right)=2 n-2
\end{array}
$$

Recap

$$
u^{T} M 1_{n}=1_{n}^{T} M u=0 \quad \forall u \in\left\{1_{n}\right\}^{\perp} \quad u^{T} M v=1_{n}^{T} M 1_{n}=0 \quad \forall u, v \in\left\{1_{n}\right\}^{\perp}
$$

Recap

$$
\begin{array}{rlrl}
u^{T} M 1_{n}= & 1_{n}^{T} M u=0 \quad \forall u \in\left\{1_{n}\right\}^{\perp} & u^{T} M v=1_{n}^{T} M 1_{n}=0 \quad \forall u, v \in\left\{1_{n}\right\}^{\perp} \\
& M_{0}+\operatorname{wt}(M) \varepsilon_{n} & & a 1_{n}^{T}+1_{n} b^{T} \text { for some } a, b \in\left\{1_{n}\right\}^{\perp}
\end{array}
$$

Recap

$$
u^{T} M 1_{n}=1_{n}^{T} M u=0 \quad \forall u \in\left\{1_{n}\right\}^{\perp} \quad u^{T} M v=1_{n}^{T} M 1_{n}=0 \quad \forall u, v \in\left\{1_{n}\right\}^{\perp}
$$

$$
M_{0}+\mathrm{wt}(M) \varepsilon_{n}
$$

$$
a 1_{n}^{T}+1_{n} b^{T} \text { for some } a, b \in\left\{1_{n}\right\}^{\perp}
$$

$$
\operatorname{dim}\left(S_{n}\right)=n^{2}-2 n+2
$$

$$
\operatorname{dim}\left(V_{n}\right)=2 n-2
$$

Recap

$$
\begin{array}{cc}
u^{T} M 1_{n}=1_{n}^{T} M u=0 \quad \forall u \in\left\{1_{n}\right\}^{\perp} & u^{T} M v=1_{n}^{T} M 1_{n}=0 \quad \forall u, v \in\left\{1_{n}\right\}^{\perp} \\
M_{0}+\operatorname{wt}(M) \varepsilon_{n} & a 1_{n}^{T}+1_{n} b^{T} \text { for some } a, b \in\left\{1_{n}\right\}^{\perp} \\
\operatorname{dim}\left(S_{n}\right)=n^{2}-2 n+2 & \operatorname{dim}\left(V_{n}\right)=2 n-2
\end{array}
$$

Can we show that $M_{n}(K)=S_{n} \oplus V_{n}$?

Recap

$$
S_{n} \quad V_{n}
$$

$$
\operatorname{dim}\left(S_{n}\right)=n^{2}-2 n+2
$$

$$
\operatorname{dim}\left(V_{n}\right)=2 n-2
$$

Can we show that $M_{n}(K)=S_{n} \oplus V_{n}$?

- $\operatorname{dim}\left(S_{n}\right)+\operatorname{dim}\left(V_{n}\right)=n^{2}=\operatorname{dim}\left(M_{n}(K)\right)$

Recap

$$
\begin{array}{cc}
u^{T} M 1_{n}=1_{n}^{T} M u=0 \quad \forall u \in\left\{1_{n}\right\}^{\perp} & u^{T} M v=1_{n}^{T} M 1_{n}=0 \quad \forall u, v \in\left\{1_{n}\right\}^{\perp} \\
M_{0}+\operatorname{wt}(M) \varepsilon_{n} & a 1_{n}^{T}+1_{n} b^{T} \text { for some } a, b \in\left\{1_{n}\right\}^{\perp} \\
\operatorname{dim}\left(S_{n}\right)=n^{2}-2 n+2 & \operatorname{dim}\left(V_{n}\right)=2 n-2
\end{array}
$$

Can we show that $M_{n}(K)=S_{n} \oplus V_{n}$?

- $\operatorname{dim}\left(S_{n}\right)+\operatorname{dim}\left(V_{n}\right)=n^{2}=\operatorname{dim}\left(M_{n}(K)\right)$
- Need to show: $S_{n} \cap V_{n}=\mathbf{0}_{n}$

$S_{n} \cap V_{n}=\mathbf{0}_{n}$

Assume $M \in S_{n} \cap V_{n}$ then, for all $u, v \in\left\{1_{n}\right\}^{\perp}, M$ satisfies:
(1) $\left\langle u, M 1_{n}\right\rangle=0$
(2) $\left\langle 1_{n}, M u\right\rangle=0$
($\langle v, M u\rangle=0$
(- $\left\langle 1_{n}, M 1_{n}\right\rangle=0$

$S_{n} \cap V_{n}=\mathbf{0}_{n}$

Assume $M \in S_{n} \cap V_{n}$ then, for all $u, v \in\left\{1_{n}\right\}^{\perp}, M$ satisfies:
(2) $\left\langle 1_{n}, M u\right\rangle=0$

- $\langle v, M u\rangle=0$

Equation (2) $\Longrightarrow M u$ is orthogonal to 1_{n}.

$S_{n} \cap V_{n}=\mathbf{0}_{n}$

Assume $M \in S_{n} \cap V_{n}$ then, for all $u, v \in\left\{1_{n}\right\}^{\perp}, M$ satisfies:
($\langle v, M u\rangle=0$

Equation (2) $\Longrightarrow M u$ is orthogonal to 1_{n}.
Equation (3) $\Longrightarrow M u$ is orthogonal to $\left\{1_{n}\right\}^{\perp}$.

$S_{n} \cap V_{n}=\mathbf{0}_{n}$

Assume $M \in S_{n} \cap V_{n}$ then, for all $u, v \in\left\{1_{n}\right\}^{\perp}, M$ satisfies:
(1) $\left\langle u, M 1_{n}\right\rangle=0$
(2) $\left\langle 1_{n}, M u\right\rangle=0$
($\langle v, M u\rangle=0$
(- $\left\langle 1_{n}, M 1_{n}\right\rangle=0$
Equation (2) $\Longrightarrow M u$ is orthogonal to 1_{n}.
Equation (3) $\Longrightarrow M u$ is orthogonal to $\left\{1_{n}\right\}^{\perp}$.
So, for all $u \in\left\{1_{n}\right\}^{\perp}, M u$ must be orthogonal to all of K^{n}, hence $M u=0$.

$S_{n} \cap V_{n}=\mathbf{0}_{n}$

Assume $M \in S_{n} \cap V_{n}$ then, for all $u, v \in\left\{1_{n}\right\}^{\perp}, M$ satisfies:
(1) $\left\langle u, M 1_{n}\right\rangle=0$
(- $\left\langle 1_{n}, M 1_{n}\right\rangle=0$
Equation (2) $\Longrightarrow M u$ is orthogonal to 1_{n}.
Equation (3) $\Longrightarrow M u$ is orthogonal to $\left\{1_{n}\right\}^{\perp}$.
So, for all $u \in\left\{1_{n}\right\}^{\perp}, M u$ must be orthogonal to all of K^{n}, hence $M u=0$.
Using a similar argument with equations (1) and (4), we have that $M 1_{n}=0$.

$S_{n} \cap V_{n}=\mathbf{0}_{n}$

Assume $M \in S_{n} \cap V_{n}$ then, for all $u, v \in\left\{1_{n}\right\}^{\perp}, M$ satisfies:
(1) $\left\langle u, M 1_{n}\right\rangle=0$
(2) $\left\langle 1_{n}, M u\right\rangle=0$
(3) $\langle v, M u\rangle=0$
(-) $\left\langle 1_{n}, M 1_{n}\right\rangle=0$
Equation (2) $\Longrightarrow M u$ is orthogonal to 1_{n}.
Equation (3) $\Longrightarrow M u$ is orthogonal to $\left\{1_{n}\right\}^{\perp}$.
So, for all $u \in\left\{1_{n}\right\}^{\perp}, M u$ must be orthogonal to all of K^{n}, hence $M u=0$.
Using a similar argument with equations (1) and (4), we have that $M 1_{n}=0$.
Since $\operatorname{span}\left(1_{n},\left\{1_{n}\right\}^{\perp}\right)=K^{n}$, we know $M a=0$ for all $a \in K^{n}$, hence $M=\mathbf{0}_{n}$. Hence, $S_{n} \oplus V_{n}=M_{n}(K)$.

Superalgebra property

To check we have a superalgebra, we need:

$$
S_{n} S_{n} \subset S_{n}, V_{n} V_{n} \subset S_{n}, S_{n} V_{n} \subset V_{n}, V_{n} S_{n} \subset V_{n} .
$$

Superalgebra property

To check we have a superalgebra, we need:

$$
S_{n} S_{n} \subset S_{n}, V_{n} V_{n} \subset S_{n}, S_{n} V_{n} \subset V_{n}, V_{n} S_{n} \subset V_{n} .
$$

Let $S_{1}, S_{2} \in S_{n}$, then

$$
\left\langle 1_{n}, S_{1} S_{2} u\right\rangle=1_{n}^{T} S_{1} S_{2} u=w_{1} 1_{n}^{T} S_{2} u=0 .
$$

Superalgebra property

To check we have a superalgebra, we need:

$$
S_{n} S_{n} \subset S_{n}, V_{n} V_{n} \subset S_{n}, S_{n} V_{n} \subset V_{n}, V_{n} S_{n} \subset V_{n} .
$$

Let $S_{1}, S_{2} \in S_{n}$, then

$$
\begin{aligned}
& \left\langle 1_{n}, S_{1} S_{2} u\right\rangle=1_{n}^{T} S_{1} S_{2} u=w_{1} 1_{n}^{T} S_{2} u=0 . \\
& \left\langle u, S_{1} S_{2} 1_{n}\right\rangle=u^{T} S_{1} S_{2} 1_{n}=w_{2} u^{T} S_{1} 1_{n}=0 .
\end{aligned}
$$

$\Longrightarrow S_{1} S_{2} \in S_{n}$.

Superalgebra property

To check we have a superalgebra, we need:

$$
S_{n} S_{n} \subset S_{n}, V_{n} V_{n} \subset S_{n}, S_{n} V_{n} \subset V_{n}, V_{n} S_{n} \subset V_{n} .
$$

Let $S_{1}, S_{2} \in S_{n}$, then

$$
\begin{aligned}
& \left\langle 1_{n}, S_{1} S_{2} u\right\rangle=1_{n}^{T} S_{1} S_{2} u=w_{1} 1_{n}^{T} S_{2} u=0 . \\
& \left\langle u, S_{1} S_{2} 1_{n}\right\rangle=u^{T} S_{1} S_{2} 1_{n}=w_{2} u^{T} S_{1} 1_{n}=0 .
\end{aligned}
$$

$\Longrightarrow S_{1} S_{2} \in S_{n}$. Others follow similarly, so S_{n} and V_{n} form a superalgebra.

Superalgebra property

To check we have a superalgebra, we need:

$$
S_{n} S_{n} \subset S_{n}, V_{n} V_{n} \subset S_{n}, S_{n} V_{n} \subset V_{n}, V_{n} S_{n} \subset V_{n} .
$$

Let $S_{1}, S_{2} \in S_{n}$, then

$$
\begin{aligned}
& \left\langle 1_{n}, S_{1} S_{2} u\right\rangle=1_{n}^{T} S_{1} S_{2} u=w_{1} 1_{n}^{T} S_{2} u=0 . \\
& \left\langle u, S_{1} S_{2} 1_{n}\right\rangle=u^{T} S_{1} S_{2} 1_{n}=w_{2} u^{T} S_{1} 1_{n}=0 .
\end{aligned}
$$

$\Longrightarrow S_{1} S_{2} \in S_{n}$. Others follow similarly, so S_{n} and V_{n} form a superalgebra.
For any matrix $M \in M_{n}(K)$, we can decompose M as $M=S+V$ for some $S \in S_{n}$ and $V \in V_{n}$. In particular,

$$
M=M_{0}+\mathrm{wt}(M) \varepsilon_{n}+a 1_{n}^{T}+1_{n} b^{T}
$$

Lattice isometry problem

- Take two rank $n \mathbb{Z}$-lattices Λ_{M} and Λ_{B} with associated Gram matrices $M, B \in G L_{n}(\mathbb{Z})$.
- If Λ_{M} and Λ_{B} are isometric, then we can write $M=N^{T} B N$ for some $N \in G L_{n}(\mathbb{Z})$.
- We want to use the superalgebra structure on the above equation to try to determine if its possible for the lattices to be isometric. In the case $B=I_{n}$, Higham, Lettington \& Schmidt (2021) studied this problem to see when $M=N^{T} N$.

Lattice isometry problem

- Take two rank $n \mathbb{Z}$-lattices Λ_{M} and Λ_{B} with associated Gram matrices $M, B \in G L_{n}(\mathbb{Z})$.
- If Λ_{M} and Λ_{B} are isometric, then we can write $M=N^{T} B N$ for some $N \in G L_{n}(\mathbb{Z})$.
- We want to use the superalgebra structure on the above equation to try to determine if its possible for the lattices to be isometric. In the case $B=I_{n}$, Higham, Lettington \& Schmidt (2021) studied this problem to see when $M=N^{T} N$.
Idea: Decompose M into S_{n} and V_{n} parts and compare with the S_{n} and V_{n} parts of $N^{T} B N$.

To do this, we need to take $K=\mathbb{Q}$ and generalise the ideas of S_{n} and V_{n}.

The new superalgebra

Take B to be a symmetric, positive definite matrix in $G L_{n}(\mathbb{Z})$. Define $\langle\cdot, \cdot\rangle_{B}$ to be the vector inner product $\langle a, b\rangle_{B}=a^{T} B b$. Then

$$
\begin{aligned}
& S_{n, B}=\left\{M \in M_{n}(\mathbb{Q}):\left\langle u, M 1_{n}\right\rangle_{B}=0,\left\langle 1_{n}, M u\right\rangle_{B}=0 \forall u \in\left\{1_{n}\right\}_{B}^{\perp}\right\} . \\
& V_{n, B}=\left\{M \in M_{n}(\mathbb{Q}):\left\langle 1_{n}, M 1_{n}\right\rangle_{B}=0,\langle u, M v\rangle_{B}=0 \forall u, v \in\left\{1_{n}\right\}_{B}^{\perp}\right\} .
\end{aligned}
$$

where $u \in\left\{1_{n}\right\}_{B}^{\frac{1}{B}} \Longleftrightarrow\left\langle u, 1_{n}\right\rangle_{B}=u^{T} B 1_{n}=0$.

The new superalgebra

Take B to be a symmetric, positive definite matrix in $G L_{n}(\mathbb{Z})$. Define $\langle\cdot, \cdot\rangle_{B}$ to be the vector inner product $\langle a, b\rangle_{B}=a^{T} B b$. Then

$$
\begin{aligned}
& S_{n, B}=\left\{M \in M_{n}(\mathbb{Q}):\left\langle u, M 1_{n}\right\rangle_{B}=0,\left\langle 1_{n}, M u\right\rangle_{B}=0 \forall u \in\left\{1_{n}\right\}_{B}^{\perp}\right\} . \\
& V_{n, B}=\left\{M \in M_{n}(\mathbb{Q}):\left\langle 1_{n}, M 1_{n}\right\rangle_{B}=0,\langle u, M v\rangle_{B}=0 \forall u, v \in\left\{1_{n}\right\}_{B}^{\perp}\right\} .
\end{aligned}
$$

where $u \in\left\{1_{n}\right\}_{B}^{\perp} \Longleftrightarrow\left\langle u, 1_{n}\right\rangle_{B}=u^{T} B 1_{n}=0$.
Define weight w.r.t. B as

$$
\mathrm{wt}(M)_{B}=\frac{1_{n}^{T} B M 1_{n}}{1_{n}^{T} B 1_{n}}=\frac{1_{n}^{T} B M 1_{n}}{n^{2} \mathrm{wt}(B)}
$$

The new superalgebra

Then

$$
\begin{aligned}
& M \in S_{n, B} \Longleftrightarrow M=M_{0}+\frac{\mathrm{wt}(M)_{B}}{n^{2} \mathrm{wt}(B)} \varepsilon_{n} B, \text { for some } M_{0} \text { s.t. } \mathrm{wt}\left(M_{0}\right)_{B}=0 . \\
& M \in V_{n, B} \Longleftrightarrow M=a 1_{n}^{T} B+1_{n} b^{T} B \text { for some } a, b \in\left\{1_{n}\right\}_{B}^{\perp} .
\end{aligned}
$$

It turns out $S_{n, B} \oplus V_{n, B}=M_{n}(\mathbb{Q})$ is also a superalgebra. So for any $M \in M_{n}(\mathbb{Q})$, we can write:

$$
M=M_{0}+\frac{\mathrm{wt}(M)_{B}}{n^{2} \mathrm{wt}(B)} \varepsilon_{n} B+a 1_{n}^{T} B+1_{n} b^{T} B .
$$

Application to lattice isometry

Let's assume that M and B are the gram matrices of two isometric lattices. Then we can write $M=N^{T} B N$. Taking the weight of M (multiplied by n^{2}):

$$
n^{2} \mathrm{wt}(M)
$$

Application to lattice isometry

Let's assume that M and B are the gram matrices of two isometric lattices. Then we can write $M=N^{T} B N$. Taking the weight of M (multiplied by n^{2}):

$$
n^{2} \mathrm{wt}(M)=1_{n}^{T} M 1_{n}=1_{n}^{T} N^{T} B N 1_{n}
$$

Application to lattice isometry

Let's assume that M and B are the gram matrices of two isometric lattices. Then we can write $M=N^{T} B N$. Taking the weight of M (multiplied by n^{2}):

$$
\begin{aligned}
n^{2} \mathrm{wt}(M) & =1_{n}^{T} M 1_{n}=1_{n}^{T} N^{T} B N 1_{n} \\
& =1_{n}^{T} N^{T} B\left(N_{0}+\omega_{N} \varepsilon_{n} B+a 1_{n}^{T} B+1_{n} b^{T} B\right) 1_{n}
\end{aligned}
$$

Application to lattice isometry

Let's assume that M and B are the gram matrices of two isometric lattices. Then we can write $M=N^{T} B N$. Taking the weight of M (multiplied by n^{2}):

$$
\begin{aligned}
n^{2} \mathrm{wt}(M) & =1_{n}^{T} M 1_{n}=1_{n}^{T} N^{T} B N 1_{n} \\
& =1_{n}^{T} N^{T} B\left(N_{0}+\omega_{N} \varepsilon_{n} B+a 1_{n}^{T} B+1_{n} b^{T} B\right) 1_{n} \\
& =1_{n}^{T} N^{T} B\left(\omega_{N} \varepsilon_{n} B+a 1_{n}^{T} B\right) 1_{n}
\end{aligned}
$$

Application to lattice isometry

Let's assume that M and B are the gram matrices of two isometric lattices. Then we can write $M=N^{T} B N$. Taking the weight of M (multiplied by n^{2}):

$$
\begin{aligned}
n^{2} \mathrm{wt}(M) & =1_{n}^{T} M 1_{n}=1_{n}^{T} N^{T} B N 1_{n} \\
& =1_{n}^{T} N^{T} B\left(N_{0}+\omega_{N} \varepsilon_{n} B+a 1_{n}^{T} B+1_{n} b^{T} B\right) 1_{n} \\
& =1_{n}^{T} N^{T} B\left(\omega_{N} \varepsilon_{n} B+a 1_{n}^{T} B\right) 1_{n} \\
& =\omega_{N} 1_{n}^{T} N^{T} B 1_{n} 1_{n}^{T} B 1_{n}+1_{n}^{T} N^{T} B a 1_{n}^{T} B 1_{n}
\end{aligned}
$$

Application to lattice isometry

Let's assume that M and B are the gram matrices of two isometric lattices. Then we can write $M=N^{T} B N$. Taking the weight of M (multiplied by n^{2}):

$$
\begin{aligned}
n^{2} \mathrm{wt}(M) & =1_{n}^{T} M 1_{n}=1_{n}^{T} N^{T} B N 1_{n} \\
& =1_{n}^{T} N^{T} B\left(N_{0}+\omega_{N} \varepsilon_{n} B+a 1_{n}^{T} B+1_{n} b^{T} B\right) 1_{n} \\
& =1_{n}^{T} N^{T} B\left(\omega_{N} \varepsilon_{n} B+a 1_{n}^{T} B\right) 1_{n} \\
& =\omega_{N} \underbrace{\underbrace{1}_{n} B 1_{n}(B)}_{n^{2} N^{T} B 1_{n}}+1_{n}^{T} N^{T} B a \underbrace{1_{n}^{T} B 1_{n}}_{n^{2} \mathrm{wt}(B)}
\end{aligned}
$$

Application to lattice isometry

Let's assume that M and B are the gram matrices of two isometric lattices. Then we can write $M=N^{T} B N$. Taking the weight of M (multiplied by n^{2}):

$$
\begin{aligned}
n^{2} \mathrm{wt}(M) & =1_{n}^{T} M 1_{n}=1_{n}^{T} N^{T} B N 1_{n} \\
& =1_{n}^{T} N^{T} B\left(N_{0}+\omega_{N} \varepsilon_{n} B+a 1_{n}^{T} B+1_{n} b^{T} B\right) 1_{n} \\
& =1_{n}^{T} N^{T} B\left(\omega_{N} \varepsilon_{n} B+a 1_{n}^{T} B\right) 1_{n} \\
& =\omega_{N} \underbrace{1_{n}^{T} N^{T} B 1_{n}} \underbrace{1_{n}^{T} B 1_{n}}_{n^{2} \mathrm{wt}(B)}+1_{n}^{T} N^{T} B a \underbrace{1_{n}^{T} B 1_{n}}_{n^{2} \mathrm{wt}(B)} \\
\omega_{N}=\frac{\mathrm{wt}(N)_{B}}{n^{2} \mathrm{wt}(B)} & =\frac{1_{n}^{T} B N 1_{n}}{n^{4} \mathrm{wt}(B)^{2}} \Longrightarrow 1_{n}^{T} N^{T} B 1_{n}=1_{n}^{T} B N 1_{n}=n^{4} \mathrm{wt}(B)^{2} \omega_{N}
\end{aligned}
$$

Application to lattice isometry

Let's assume that M and B are the gram matrices of two isometric lattices. Then we can write $M=N^{T} B N$. Taking the weight of M (multiplied by n^{2}):

$$
\begin{aligned}
n^{2} \mathrm{wt}(M) & =1_{n}^{T} M 1_{n}=1_{n}^{T} N^{T} B N 1_{n} \\
& =1_{n}^{T} N^{T} B\left(N_{0}+\omega_{N} \varepsilon_{n} B+a 1_{n}^{T} B+1_{n} b^{T} B\right) 1_{n} \\
& =1_{n}^{T} N^{T} B\left(\omega_{N} \varepsilon_{n} B+a 1_{n}^{T} B\right) 1_{n} \\
& =\omega_{N} \underbrace{1_{n}^{T} N^{T} B 1_{n}}_{n^{4} \mathrm{wt}(B)^{2} \omega_{N}} \underbrace{1_{n}^{T} B 1_{n}(B)}_{n}+1_{n}^{T} N^{T} B a \underbrace{1_{n}^{T} B 1_{n}}_{n^{2} \mathrm{wt}(B)} \\
& =n^{6} \mathrm{wt}(B)^{3} \omega_{N}^{2}+n^{2} \mathrm{wt}(B) 1_{n}^{T}\left(N_{0}^{T}+\omega_{N} B \varepsilon_{n}+B 1_{n}^{T} a+B b 1_{n}^{T}\right) B a
\end{aligned}
$$

Application to lattice isometry

Let's assume that M and B are the gram matrices of two isometric lattices. Then we can write $M=N^{T} B N$. Taking the weight of M (multiplied by n^{2}):

$$
\begin{aligned}
n^{2} \mathrm{wt}(M) & =1_{n}^{T} M 1_{n}=1_{n}^{T} N^{T} B N 1_{n} \\
& =1_{n}^{T} N^{T} B\left(N_{0}+\omega_{N} \varepsilon_{n} B+a 1_{n}^{T} B+1_{n} b^{T} B\right) 1_{n} \\
& =1_{n}^{T} N^{T} B\left(\omega_{N} \varepsilon_{n} B+a 1_{n}^{T} B\right) 1_{n} \\
& =\omega_{N} \underbrace{1_{n}^{T} N^{T} B 1_{n}}_{n^{4} \mathrm{wt}(B)^{2} \omega_{N}} \underbrace{1_{n}^{T} B 1_{n}}_{n^{2} \mathrm{wt}(B)}+1_{n}^{T} N^{T} B a \underbrace{1_{n}^{T} B 1_{n}}_{n^{2} \mathrm{wt}(B)} \\
& =n^{6} \mathrm{wt}(B)^{3} \omega_{N}^{2}+n^{2} \mathrm{wt}(B) 1_{n}^{T}\left(N_{0}^{T}+\omega_{N} B \varepsilon_{n}+B 1_{n}^{T} a+B b 1_{n}^{T}\right) B a \\
& =n^{6} \mathrm{wt}(B)^{3} \omega_{N}^{2}+n^{4} \mathrm{wt}(B)^{2} a^{T} B a
\end{aligned}
$$

Application to lattice isometry

So we have

$$
n^{2} \mathrm{wt}(M)=n^{6} \mathrm{wt}(B)^{3} \omega_{N}^{2}+n^{4} \mathrm{wt}(B)^{2} a^{T} B a .
$$

Application to lattice isometry

So we have

$$
n^{2} \mathrm{wt}(M)=n^{6} \mathrm{wt}(B)^{3} \omega_{N}^{2}+n^{4} \mathrm{wt}(B)^{2} a^{T} B a .
$$

If we scale up by $n^{4} \mathrm{wt}(B)^{2}$, we obtain a positive definite, integral quadratic form in $n+1$ variables:

$$
n^{6} \mathrm{wt}(B)^{2} \mathrm{wt}(M)=n^{2} \mathrm{wt}(B) \tilde{\omega}^{2}+\tilde{a}^{T} B \tilde{a}
$$

where $\tilde{\omega}=n^{2} \operatorname{wt}(B) \omega_{N} \in \mathbb{Z}, \tilde{a}=n^{2} \operatorname{wt}(B) a \in \mathbb{Z}^{n}$.

Application to lattice isometry

So we have

$$
n^{2} \mathrm{wt}(M)=n^{6} \mathrm{wt}(B)^{3} \omega_{N}^{2}+n^{4} \mathrm{wt}(B)^{2} a^{T} B a .
$$

If we scale up by $n^{4} \mathrm{wt}(B)^{2}$, we obtain a positive definite, integral quadratic form in $n+1$ variables:

$$
n^{6} \mathrm{wt}(B)^{2} \mathrm{wt}(M)=n^{2} \mathrm{wt}(B) \tilde{\omega}^{2}+\tilde{a}^{T} B \tilde{a}
$$

where $\tilde{\omega}=n^{2} \operatorname{wt}(B) \omega_{N} \in \mathbb{Z}, \tilde{a}=n^{2} \operatorname{wt}(B) a \in \mathbb{Z}^{n}$.
So, if Λ_{M} and Λ_{B} are rank n, isometric lattices, we must have an integer solution to the above quadratic form.

Rank 2 example

Take $B=\left(\begin{array}{ll}1 & 0 \\ 0 & 5\end{array}\right)$ and $M=\left(\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right)$.
$n^{2} \mathrm{wt}(B)=6, \mathrm{wt}(M)=\frac{7}{4}$ and $a^{T} B a=a_{1}^{2}+5 a_{2}^{2}$.

Rank 2 example

Take $B=\left(\begin{array}{ll}1 & 0 \\ 0 & 5\end{array}\right)$ and $M=\left(\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right)$.
$n^{2} \mathrm{wt}(B)=6, \mathrm{wt}(M)=\frac{7}{4}$ and $a^{T} B a=a_{1}^{2}+5 a_{2}^{2}$.
Using the condition that $1_{n}^{T} B a=a_{1}+5 a_{2}=0$, we have $a_{1}=-5 a_{2}$. Taking $\tilde{\omega}=36 \omega_{M} \in \mathbb{Z}, \tilde{a}=36 a_{2} \in \mathbb{Z}$, we have

$$
42=\tilde{\omega}^{2}+5 \tilde{a}^{2} .
$$

Rank 2 example

Take $B=\left(\begin{array}{ll}1 & 0 \\ 0 & 5\end{array}\right)$ and $M=\left(\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right)$.
$n^{2} \mathrm{wt}(B)=6, \mathrm{wt}(M)=\frac{7}{4}$ and $a^{T} B a=a_{1}^{2}+5 a_{2}^{2}$.
Using the condition that $1_{n}^{T} B a=a_{1}+5 a_{2}=0$, we have $a_{1}=-5 a_{2}$. Taking $\tilde{\omega}=36 \omega_{M} \in \mathbb{Z}, \tilde{a}=36 a_{2} \in \mathbb{Z}$, we have

$$
42=\tilde{\omega}^{2}+5 \tilde{a}^{2} .
$$

So $|\tilde{a}| \leq 2$, and after trying all options, it is clear there are no integer solutions, so B and M cannot be isometric!

Thank you!

