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What is a superalgebra?

Let A and B be vector subspaces of some algebra X, we say they form a
superalgebra over X if:

A⊕B = X.

AA ⊂ A,BB ⊂ A,AB ⊂ B,BA ⊂ B.

A is the ‘even’ component, B is the ‘odd’ component.

Superalgebras arise naturally in mathematics, in particular appearing in
representation theory, and also in physics when studying the theory of
supersymmetry.

Our goal for the next few slides is to give a concrete example of a superalgebra
over Mn(K), for K a field with char(K) = 0, first constructed by Hill, Lettington
& Schmidt in 2017.
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Defining Sn

Let a matrix M be in Sn ⊂ Mn(K) if

n∑
i=1

Mij =

n∑
i=1

Mji = w for all 1 ≤ j ≤ n.

Equivalently, taking 1n =

( 1
...
1

)
∈ Zn, we can write this as

1TnM = w1Tn , M1n = w1n.

Now, taking ⟨·, ·⟩ to be the standard bilinear form ⟨a, b⟩ = aT b for a, b ∈ Kn, we
also have that:

M ∈ Sn ⇐⇒ ⟨u,M1n⟩ = 0, ⟨1n,Mu⟩ = 0 ∀ u ∈ {1n}⊥.

Jenny Roberts (University of Bristol) Matrix superalgebras 19 April 2023 3 / 18



Defining Sn

Let a matrix M be in Sn ⊂ Mn(K) if

n∑
i=1

Mij =

n∑
i=1

Mji = w for all 1 ≤ j ≤ n.

Equivalently, taking 1n =

( 1
...
1

)
∈ Zn, we can write this as

1TnM = w1Tn , M1n = w1n.

Now, taking ⟨·, ·⟩ to be the standard bilinear form ⟨a, b⟩ = aT b for a, b ∈ Kn, we
also have that:

M ∈ Sn ⇐⇒ ⟨u,M1n⟩ = 0, ⟨1n,Mu⟩ = 0 ∀ u ∈ {1n}⊥.

Jenny Roberts (University of Bristol) Matrix superalgebras 19 April 2023 3 / 18



Properties of Sn

Sn = {M ∈ Mn(K) : ⟨u,M1n⟩ = 0, ⟨1n,Mu⟩ = 0 ∀ u ∈ {1n}⊥}.

Define the weight of a matrix M to be

wt(M) =
1

n2

n∑
i,j=1

Mij =
1

n2
1TnM1n.

Then M ∈ Sn if and only if we can write:

M = M0 + wt(M)εn

where M0 is such that wt(M0) = 0 and εn is the n× n all 1s matrix
(εn = 1n1

T
n ).

dim(Sn) = n2 − 2(n− 1) = n2 − 2n+ 2.
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S2 example

Consider S2 ⊂ M2(K), then S2 = span (( 1 0
0 1 ) , (

1 1
1 1 )).

Then, wt ( 1 0
0 1 ) =

1
2 and we can write:(

1 0
0 1

)
=

1

2

(
1 −1
−1 1

)
︸ ︷︷ ︸

M0

+
1

2

(
1 1
1 1

)
︸ ︷︷ ︸
wt(M)εn
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Defining Vn

Let a matrix M be in Vn ⊂ Mn(K) if

Mij +Mkl = Mil +Mkj , i, j, k, l ∈ {1, · · · , n} and
n∑

i,j=1

Mij = 0

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗



Using the bilinear form ⟨·, ·⟩, we have:

M ∈ Vn ⇐⇒ ⟨u,Mv⟩ = 0 ∀ u, v ∈ {1n}⊥, ⟨1n,M1n⟩ = 0.
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Properties of Vn

Vn = {M ∈ Mn(K) : ⟨u,Mv⟩ = 0 ∀ u, v ∈ {1n}⊥, ⟨1n,M1n⟩ = 0}.

M ∈ Vn if and only if we can write:

M = a1Tn + 1nb
T for some a, b ∈ {1n}⊥

dim(Vn) = 2n− 2.
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V2 example

Consider V2 ⊂ M2(K), then V2 = span
((

1 0
0 −1

)
,
(

0 1
−1 0

))
. Then,(

1 0
0 −1

)
=

1

2

(
1
−1

)(
1 1

)
︸ ︷︷ ︸

a1Tn

+
1

2

(
1
1

)(
1 −1

)
︸ ︷︷ ︸

1nbT(
0 1
−1 0

)
=

1

2

(
1
−1

)(
1 1

)
+

1

2

(
1
1

)(
−1 1

)
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Recap

Sn Vn

uTM1n = 1TnMu = 0 ∀ u ∈ {1n}⊥ uTMv = 1TnM1n = 0 ∀ u, v ∈ {1n}⊥

M0 + wt(M)εn a1Tn + 1nb
T for some a, b ∈ {1n}⊥

dim(Sn) =n2 − 2n+ 2 dim(Vn) =2n− 2

Can we show that Mn(K) = Sn ⊕ Vn?

dim(Sn) + dim(Vn) = n2 = dim(Mn(K))

Need to show: Sn ∩ Vn = 0n
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Sn ∩ Vn = 0n

Assume M ∈ Sn ∩ Vn then, for all u, v ∈ {1n}⊥, M satisfies:

1 ⟨u,M1n⟩ = 0

2 ⟨1n,Mu⟩ = 0

3 ⟨v,Mu⟩ = 0

4 ⟨1n,M1n⟩ = 0

Equation (2) =⇒ Mu is orthogonal to 1n.

Equation (3) =⇒ Mu is orthogonal to {1n}⊥.

So, for all u ∈ {1n}⊥, Mu must be orthogonal to all of Kn, hence Mu = 0.

Using a similar argument with equations (1) and (4), we have that M1n = 0.

Since span(1n, {1n}⊥) = Kn, we know Ma = 0 for all a ∈ Kn, hence M = 0n.

Hence, Sn ⊕ Vn = Mn(K).
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Superalgebra property

To check we have a superalgebra, we need:

SnSn ⊂ Sn, VnVn ⊂ Sn, SnVn ⊂ Vn, VnSn ⊂ Vn.

Let S1, S2 ∈ Sn, then

⟨1n, S1S2u⟩ = 1TnS1S2u = w11
T
nS2u = 0.

⟨u, S1S21n⟩ = uTS1S21n = w2u
TS11n = 0.

=⇒ S1S2 ∈ Sn. Others follow similarly, so Sn and Vn form a superalgebra.

For any matrix M ∈ Mn(K), we can decompose M as M = S + V for some
S ∈ Sn and V ∈ Vn. In particular,

M = M0 + wt(M)εn + a1Tn + 1nb
T
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Lattice isometry problem

Take two rank n Z-lattices ΛM and ΛB with associated Gram matrices
M,B ∈ GLn(Z).
If ΛM and ΛB are isometric, then we can write M = NTBN for some
N ∈ GLn(Z).
We want to use the superalgebra structure on the above equation to try to
determine if its possible for the lattices to be isometric. In the case B = In,
Higham, Lettington & Schmidt (2021) studied this problem to see when
M = NTN .

Idea: Decompose M into Sn and Vn parts and compare with the Sn and Vn

parts of NTBN .

To do this, we need to take K = Q and generalise the ideas of Sn and Vn.
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The new superalgebra

Take B to be a symmetric, positive definite matrix in GLn(Z). Define ⟨·, ·⟩B to
be the vector inner product ⟨a, b⟩B = aTBb. Then

Sn,B = {M ∈ Mn(Q) : ⟨u,M1n⟩B = 0, ⟨1n,Mu⟩B = 0 ∀ u ∈ {1n}⊥B}.
Vn,B = {M ∈ Mn(Q) : ⟨1n,M1n⟩B = 0, ⟨u,Mv⟩B = 0 ∀ u, v ∈ {1n}⊥B}.

where u ∈ {1n}⊥B ⇐⇒ ⟨u, 1n⟩B = uTB1n = 0.

Define weight w.r.t. B as

wt(M)B =
1TnBM1n
1TnB1n

=
1TnBM1n
n2wt(B)
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The new superalgebra

Then

M ∈ Sn,B ⇐⇒ M = M0 +
wt(M)B
n2wt(B)

εnB, for some M0 s.t. wt(M0)B = 0.

M ∈ Vn,B ⇐⇒ M = a1TnB + 1nb
TB for some a, b ∈ {1n}⊥B .

It turns out Sn,B ⊕ Vn,B = Mn(Q) is also a superalgebra. So for any
M ∈ Mn(Q), we can write:

M = M0 +
wt(M)B
n2wt(B)

εnB + a1TnB + 1nb
TB.

Jenny Roberts (University of Bristol) Matrix superalgebras 19 April 2023 14 / 18



Application to lattice isometry

Let’s assume that M and B are the gram matrices of two isometric lattices. Then
we can write M = NTBN . Taking the weight of M (multiplied by n2):

n2wt(M)

= 1TnM1n = 1TnN
TBN1n

= 1TnN
TB(N0 + ωNεnB + a1TnB + 1nb

TB)1n

= 1TnN
TB(ωNεnB + a1TnB)1n

= n6wt(B)3ω2
N + n2wt(B)1Tn (N

T
0 + ωNBεn +B1Tna+Bb1Tn )Ba

= n6wt(B)3ω2
N + n4wt(B)2aTBa
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Application to lattice isometry

So we have
n2wt(M) = n6wt(B)3ω2

N + n4wt(B)2aTBa.

If we scale up by n4wt(B)2, we obtain a positive definite, integral quadratic form
in n+ 1 variables:

n6wt(B)2wt(M) = n2wt(B)ω̃2 + ãTBã

where ω̃ = n2wt(B)ωN ∈ Z, ã = n2wt(B)a ∈ Zn.

So, if ΛM and ΛB are rank n, isometric lattices, we must have an integer solution
to the above quadratic form.

Jenny Roberts (University of Bristol) Matrix superalgebras 19 April 2023 16 / 18



Application to lattice isometry

So we have
n2wt(M) = n6wt(B)3ω2

N + n4wt(B)2aTBa.

If we scale up by n4wt(B)2, we obtain a positive definite, integral quadratic form
in n+ 1 variables:

n6wt(B)2wt(M) = n2wt(B)ω̃2 + ãTBã
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Rank 2 example

Take B = ( 1 0
0 5 ) and M = ( 2 1

1 3 ).

n2wt(B) = 6,wt(M) = 7
4 and aTBa = a21 + 5a22.

Using the condition that 1TnBa = a1 + 5a2 = 0, we have a1 = −5a2. Taking
ω̃ = 36ωM ∈ Z, ã = 36a2 ∈ Z, we have

42 = ω̃2 + 5ã2.

So |ã| ≤ 2, and after trying all options, it is clear there are no integer solutions,
so B and M cannot be isometric!
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ω̃ = 36ωM ∈ Z, ã = 36a2 ∈ Z, we have

42 = ω̃2 + 5ã2.

So |ã| ≤ 2, and after trying all options, it is clear there are no integer solutions,
so B and M cannot be isometric!

Jenny Roberts (University of Bristol) Matrix superalgebras 19 April 2023 17 / 18



Thank you!
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